Rapamycin
53123-88-9
White
1kg
Powder
Express 5-7 Days Arrive
Pharmaceuticals Grade
1kg Per Foil Bag, 10 Bags Per Carton. 25 Kg Per Dr
HMJ
Foil Bag/Drum
99%
China
Product Description
Product Description
Wholesale Price 99% Purity Pharmaceutical Raw Material Powder 53123-88-9 Rapamycin
Rapamycin is produced by the soil bacterium Streptomyces hygroscopicus. The drug's name comes from Rapa Nui, the indigenous name of Easter Island, where the compound was originally discovered in soil samples in the 1970s.
Sirolimus, also known as rapamycin, is a macrolide compound that is used to coat coronary stents, prevent organ transplant rejection and treat a rare lung disease called lymphangioleiomyomatosis. It has immunosuppressant functions in humans and is especially useful in preventing the rejection of kidney transplants.
Application:
Rapamycin is a triene macrolide antibiotic, which demonstrates anti-fungal, anti-inflammatory, anti-tumor and immunosuppressive properties. Rapamycin has been shown to block T-cell activation and proliferation, as well as, the activation of p70 S6 kinase and exhibits strong binding to FK-506 binding proteins.
Rapamycin also inhibits the activity of the protein, mTOR, (mammalian target of rapamycin) which functions in a signaling pathway to promote tumor growth. Rapamycin binds to a receptor protein (FKBP12) and the rapamycin/FKB12 complex then binds to mTOR and prevents interaction of mTOR with target proteins in this signaling pathway.
Application:
Rapamycin is a triene macrolide antibiotic, which demonstrates anti-fungal, anti-inflammatory, anti-tumor and immunosuppressive properties. Rapamycin has been shown to block T-cell activation and proliferation, as well as, the activation of p70 S6 kinase and exhibits strong binding to FK-506 binding proteins.
Rapamycin also inhibits the activity of the protein, mTOR, (mammalian target of rapamycin) which functions in a signaling pathway to promote tumor growth. Rapamycin binds to a receptor protein (FKBP12) and the rapamycin/FKB12 complex then binds to mTOR and prevents interaction of mTOR with target proteins in this signaling pathway.





